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Historically, most pharmacological approaches to the treatment of addictive disorders have utilized either
substitution-based methods (i.e., nicotine replacement or opioid maintenance) or have targeted monoam-
inergic or endogenous opioidergic neurotransmitter systems. However, substantial evidence has accumulated
indicating that ligands acting on glutamatergic transmission are also of potential utility in the treatment of
drug addiction, as well as various behavioral addictions such as pathological gambling. The purpose of this
review is to summarize the pharmacological mechanisms of action and general clinical efficacy of
glutamatergic medications that are currently approved or are being investigated for approval for the
treatment of addictive disorders. Medications with effects on glutamatergic transmission that will be
discussed include acamprosate, N-acetylcysteine, D-cycloserine, gabapentin, lamotrigine, memantine,
modafinil, and topiramate. We conclude that manipulation of glutamatergic neurotransmission is a relatively
young but promising avenue for the development of improved therapeutic agents for the treatment of drug
and behavioral addictions.
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1. Introduction

Drug addiction, defined by the American Psychiatric Association as
substance dependence (American Psychiatric Association, 2002), has
numerous maladaptive psychological and behavioral manifestations
including: loss of control over drug intake, taking drugs in greater
quantities than intended, repeated unsuccessful attempts at quitting
or reducing drug use, continued drug use despite negative conse-
quences, and the emergence of drug-specific symptoms of tolerance
and/or withdrawal. In addition to numerous intangible humanistic
factors such as the disruption of families and interpersonal relation-
ships, social dysfunction, and loss of life, the socioeconomic burden
that drug addiction places on society is enormous (Cartwright, 2008;
Gilson and Kreis, 2009; Malliarakis and Lucey, 2007; Rehm et al.,
2009; Spanagel, 2009; Thavorncharoensap et al., 2009). In recent
years it has become evident that the neural substrates underlying
addiction to drugs of abuse overlap considerably with those of non-
drug “behavioral” addictions (i.e., pathological gambling, pornogra-
phy/internet addiction, etc.) (Grant et al., 2010a).

To date, medications that have been developed to aid in the
treatment of addictive disorders have shown only moderate success.
Known barriers that compromise the efficacy of medication-based
approaches to treatment to addiction disorders include poor medi-
cation compliance, adverse side effects, safety issues, variable
medication responses within treatment groups, poor integration of
medication management into psychosocial or cognitive-behavioral
therapies, inaccessibility to medications or adequate health care, and
relapse following discontinuation of the therapeutic medication
(Koob et al., 2009; Montoya and Vocci, 2008; O'Brien, 2008; Ross
and Peselow, 2009; Zahm, 2010). While numerous medications of
various classes that have been approved for other medical conditions
are currently being investigated as potential aids in the treatment of
addictive disorders, the only medications approved specifically for the
treatment thus far in the United States are varenicline, buproprion,
and nicotine replacement therapies for smoking cessation, long-
acting opioids (i.e., methadone or buprenorphine) for opiate
dependence, and disulfiram, naltrexone, and acamprosate for alcohol
dependence. No medications to aid in the treatment of addiction to
cocaine, methamphetamine, or marijuana are currently approved, nor
are any approved for the treatment of behavioral addictions.

The purpose of the present review is to provide a summary of the
pharmacological mechanisms of action and general clinical efficacy of
medications acting on glutamatergic transmission in the treatment of
addictive disorders. These medications include acamprosate, N-
acetylcysteine, D-cycloserine, gabapentin, lamotrigine, memantine,
modafinil, and topiramate. It should be noted that many of these
medications have mechanisms of action that include multiple
neurotransmitter systems, and perhaps with the exception of D-
cycloserine, none is known to selectively target glutamatergic
transmission or specific glutamate receptors. However, there is a
strong body of preclinical evidence arising from over two decades of
animal studies suggesting a critical role for glutamate transmission
and glutamate receptors in drug reward, reinforcement, and relapse
(Bird and Lawrence, 2009; Bowers et al., 2010; Gass and Olive, 2008;
Kalivas et al., 2009; Moussawi and Kalivas, 2010; Olive, 2009, 2010;
Reissner and Kalivas, 2010; Tzschentke and Schmidt, 2003; Uys and
LaLumiere, 2008). For an overview of glutamatergic transmission and
glutamate receptors, the reader is referred to the review by Sanacora
in the current issue (publisher – please insert correct page numbers
here). In addition, the small but growing body of literature on the use
of these medications to treat behavioral addictions such as compul-
sive gambling, and studies on this topic will also be reviewed.

2. Glutamatergic medications for the treatment of substance
use disorders

2.1. Acamprosate

2.1.1. Mechanism of action
Acamprosate (calcium acetylhomotaurine) is derived from homo-

taurine, a nonspecific γ-aminobutyric acid (GABA) agonist. The
molecule is N-acetylated to facilitate penetration across the blood–
brain barrier, and is formulated as a calcium salt to increase
absorption of the compound from the gastrointestinal tract. Despite
these chemical modifications, its overall bioavailability remains poor
(i.e., b20%) and requires doses in the range of 2–3 g per day to
demonstrate efficacy. Many pharmacological mechanisms of action of
acamprosate have been proposed, but the first studies suggesting that
acamprosate exerts its actions through glutamatergic mechanisms
were reported by =Zeise et al. (1990, 1993). These investigators
showed that acamprosate reduced the excitation of neuronal firing
evoked by iontophoretic application of L-glutamate onto cortical
neurons in vivo, and inhibited excitatory postsynaptic potentials
(EPSPs) evoked by glutamate and N-methyl-D-aspartate (NMDA).
Additional evidence for a NMDA antagonist-like mechanism of action
of acamprosate came from studies demonstrating that this compound
antagonizes NMDA-evoked excitatory postsynaptic currents (EPSCs)
in hippocampal neurons (Rammes et al., 2001) and up-regulates
NMDA receptor subunit expression in a similar fashion to that
observed following treatment with the non-competitive NMDA
antagonist MK-801 (Putzke et al., 1996; Rammes et al., 2001).
However, some investigators have found no effect of acamprosate
on NMDA-mediated synaptic transmission in the CA1 region of the
hippocampus (Popp and Lovinger, 2000), while others have found
that acamprosate actually potentiates NMDA receptor function in the
CA1 region of the hippocampus (Madamba et al., 1996) and in the
nucleus accumbens (Berton et al., 1998). Despite these inconsistent
electrophysiological findings, binding studies have confirmed an
interaction of acamprosate with the spermidine-, glutamate- and/or
MK-801-sensitive binding site of the NMDA receptor (al Qatari et al.,
1998; Harris et al., 2002; Naassila et al., 1998), and as such
acamprosate is often referred to nonspecifically as an “NMDA
modulator” (Fig. 1). Although the precise molecular target(s) of
acamprosate are still not firmly established (Kiefer and Mann, 2010;
Reilly et al., 2008), most current theories posit that acamprosate
restores the imbalances between excitatory and inhibitory amino acid
neurotransmission that result from chronic alcohol consumption (De
Witte et al., 2005; Kiefer and Mann, 2010; Spanagel et al., 2005;
Umhau et al., 2010).

2.1.2. Clinical efficacy
The first demonstration of the clinical efficacy of acamprosate in

reducing the incidence of relapse in alcoholics was published in the
mid-1980s (Lhuintre et al., 1985). Over the years, acamprosate has
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demonstrated effect sizes ranging from small to moderate in reducing
overall alcohol consumption, subjective measures of alcohol craving,
and promoting abstinence, as reviewed in recent meta-analyses
(Kennedy et al., 2010; Kiefer and Mann, 2010; Kranzler and Gage,
2008; Mann et al., 2008; Mason and Heyser, 2010a,b; Rosner et al.,
2010; Snyder and Bowers, 2008). Due to its poor oral bioavailability,
large doses of acamprosate (typically in the 2–3 g per day range) are
needed in order to observe efficacy. However, a recent large multi-
center study of over 1200 alcohol-dependent patients (known as the
Combined Medications and Behavioral Interventions, or “COMBINE”
study) found that acamprosate was no more effective than placebo in
reducing the incidence of relapse in a medically managed setting
(Anton et al., 2006). Other recent studies have also demonstrated a
lack of efficacy of acamprosate in reducing alcohol consumption or
craving, or promoting abstinence (Donovan et al., 2008; Laaksonen et
al., 2008; Morley et al., 2006; Richardson et al., 2008). The reasons for
these negative findings, especially in light of numerous previous
positive findings (summarized in the meta-analyses cited above), are
still being debated. Some investigators have suggested that a
significant “placebo effect” in the COMBINE study might have masked
any beneficial effects of acamprosate (Weiss et al., 2008), and that
improvements in nondrinking related outcomes measures such as
quality of life were in fact superior in acamprosate- versus placebo-
treated patients in the COMBINE study (LoCastro et al., 2009). Others
have suggested that initiation of acamprosate treatment following
detoxification produces reductions in alcohol craving as opposed to
when given during active alcohol consumption (Kampman et al.,
2009), as was done in the COMBINE study. The requirement for three
doses per day may be a compliance barrier for some patients.
Decreased motivation to initiate treatment among depressed as
compared to non-depressed alcoholics significantly affects treatment
compliance in acamprosate-treated patients (Lejoyeux and Lehert,
2011). Finally, other motivational factors such as having a treatment
goal of complete abstinence as opposed to moderate drinking appear
to have beneficial effects in patients treated with acamprosate as
compared with placebo (Mason et al., 2006; Mason and Lehert, 2010).
It is likely that, as with any psychotropic medication, specific subsets
of patientsmay respond better to acamprosate than others. Additional
research is clearly needed to determine precisely what these
beneficial motivational, methodological, outcome measure, or per-
haps genetic factors are in order to identify alcoholics that are most
likely to exhibit a positive response to acamprosate.

Regarding the utility of acamprosate in treating addiction to other
drugs of abuse or behavioral addictions such as pathological gambling,
large-scale studies are non-existent, and the few studies that have
been published have reported mixed results. For example, a recent
case report supported the potential utility of acamprosate in treating
pathological gambling (Raj, 2010). On the other hand, Kampman and
colleagues recently reported that in a double-blind placebo-controlled
trial of 60 cocaine-dependent patients, acamprosate showed no
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beneficial effects on cocaine use, craving, or withdrawal symptoms as
compared to patients receiving placebo (Kampman et al., 2011). These
latter findings are particularly disappointing since several rodent
studies have shown that acamprosate attenuates the conditioned
rewarding effects of cocaine as well as drug- and cue-primed
reinstatement of cocaine-seeking behavior (Bowers et al., 2007;
Mcgeehan and Olive, 2003, 2006). However, given the small sample
size and high dropout rate of the study by Kampman and colleagues,
the possibility remains that acamprosate may be beneficial in the
treatment of cocaine addiction in a as of yet undefined subset of
cocaine-dependent individuals.

2.2. N-acetylcysteine (NAC)

2.2.1. Mechanism of action
NAC is an N-acetylated derivative of the naturally occurring amino

acid cysteine. Once inside major internal organs including the brain,
NAC is deacetylated to form free cysteine, and homodimerization of
two cysteine molecules via a disulfide bond results in the formation of
cystine. Thus, NAC is considered a cystine pro-drug that binds to the
cystine-glutamate exchanger (often referred to as system xc-) and
promotes the synthesis of glutathione (Baker et al., 2002; McBean,
2002). Through this mechanism NAC has proven clinical efficacy as a
mucolytic agent and in the treatment of acetaminophen overdose.
However, in addition to promoting glutathione synthesis, system xc-
is an antiporter protein that transports extracellular cystine into glial
cells and intracellular glutamate from inside glia into the extracellular
environment. The resulting effect of NAC is an elevation of
extracellular glutamate levels, which are reduced during protracted
cocaine withdrawal (Baker et al., 2002, 2003; Kau et al., 2008;
Madayag et al., 2007; Melendez et al., 2005; Moran et al., 2005). This
“normalization” of extracellular glutamate levels restores glutama-
tergic tone on presynaptic release-regulating group II metabotropic
glutamate receptors (mGluR2/3, Moran et al., 2005; see Fig. 1) and
prevents the ability of a subsequent cocaine challenge to increase
extracellular glutamate levels in the nucleus accumbens. The end
result is an inhibition of the ability of acute cocaine exposure to
reinstate cocaine-seeking behavior (Amen et al., 2011; Baker et al.,
2003; Kau et al., 2008; Madayag et al., 2007; Moran et al., 2005;
Moussawi et al., 2009).

2.2.2. Clinical efficacy
Based on these findings from animal studies, several studies on the

efficacy of NAC to reduce cocaine use, craving, withdrawal symptoms,
and relapse in human cocaine addicts have recently been published. In
a small safety and tolerability study (n=13 subjects), it was
demonstrated that NAC (1200 mg/day for two days) was well-
tolerated by cocaine addicts and produced slight trends in reductions
in self-reports of cocaine use, craving and withdrawal symptoms
(LaRowe et al., 2006). Small follow-up studies (n=15–23 subjects)
have confirmed that similar doses of NAC are well-tolerated by
cocaine addicts and actually produce significant reductions in cocaine
use and craving in treatment-seeking outpatient cocaine-dependent
individuals (Amen et al., 2011; LaRowe et al., 2007; Mardikian et al.,
2007). Importantly, however, a recent pilot study showed that NAC
does not reduce subjective feelings of a cocaine “high” or “rush”
following exposure to video of cocaine-associated cues, but does
attenuate craving evoked by acute IV cocaine exposure (Amen et al.,
2011). While these latter results may appear to be in disagreement
with those of LaRowe, Mardikian, and colleagues, who found
reductive effects of NAC on cue-evoked cocaine craving, the extremely
small sample size of the study by Amen and colleagues (n=4
subjects) may limit its interpretability. Regardless, these preliminary
results provide encouraging data that NAC may be of potential use in
the treatment of cocaine addiction, and additional multi-center
clinical trials are needed to confirm these results on a larger scale.
With regards to other drugs of abuse, a recent small clinical trial
(n=29 subjects) investigated the potential efficacy of NAC in aiding
in smoking cessation (Knackstedt et al., 2009). The results of this
study showed that NAC treatment (2400 mg/day) reduces the
number of cigarettes smoked relative to the number of cigarettes
smoked by subjects receiving placebo, but NAC treatment did not
reduce plasma carbon monoxide levels, nicotine withdrawal symp-
toms, or nicotine craving. Another small pilot study (n=24 subjects)
demonstrated that NAC reduced marijuana use and craving in
marijuana-dependent young adults aged 18–21 compared to placebo
(Gray et al., 2010). As for non-drug addictions, a small clinical
trial (n=23 subjects) showed that NAC (mean effective dose
1477 mg/day) lowered scores on the Yale Brown Obsessive Compulsive
Scale Modified for Pathological Gambling [PG-YBOCS] (Grant et al.,
2007), and it has been shown to be effective in reducing compulsive
nail-biting associated with bipolar disorder in three patients (Berk et
al., 2009). Finally, NAC was also shown to suppress hair-pulling in a
double-blind study of 50 patients with trichotillomania (Grant et al.,
2009).

Although all of the aforementioned clinical studies are preliminary
and utilized relatively small sample sizes, the seemingly consistent
anti-addictive properties of NAC provide compelling evidence that
this medication, as well as other compounds that restore glutamate
homeostasis (Knackstedt et al., 2010; Sari et al., 2009), may
potentially prove to be effective pharmacotherapeutic aids in the
treatment of drug and behavioral addictions.

2.3. D-cycloserine (DCS)

2.3.1. Mechanism of action
DCS (D-4-amino-3-isoxazolidone) is a derivative of the naturally

occurring amino acid serine. It acts as co-agonist at the glycine-
binding site on the NR1 subunit of the NMDA receptor, which is
present in all NMDA receptors in the central nervous system. DCS is
insufficient to activate NMDA receptors on its own, and requires the
presence of glutamate binding to the receptor in order to exert its
effects. Activation of the glycine binding site by DCS enhances NMDA
functioning by increasing calcium influx through these receptors
without causing neurotoxicity (Sheinin et al., 2001; see Fig. 1).

2.3.2. Clinical efficacy
As a result of its ability to enhance NMDA receptor function, DCS is

believed to facilitate synaptic plasticity and certain forms of learning,
including Pavlovian associative learning and extinction learning, and
as such it has been reported to successfully facilitate the extinction of
fear responses in anxiety disorder patients during cue exposure
therapy in numerous clinical studies (reviewed in Davis et al., 2006;
Myers et al., 2011; Myers and Davis, 2007). With regards to addiction,
animal studies have shown DCS facilitates the extinction of a cocaine-
induced conditioned place preference (CPP) (Botreau et al., 2006;
Thanos et al., 2009), reduces reacquisition of cocaine self-administration
by enhancing extinction learning (Nic Dhonnchadha et al., 2010), and
also attenuates the reinstatement of cocaine-seeking in a context-
independent manner (Torregrossa et al., 2010). However, only a few
clinical studies on the effects of DCS on addictive behaviors have been
conducted thus far.

Santa Ana et al. (2009) recently reported that in 12 nicotine-
dependent cigarette smokers undergoing cue exposure therapy,
administration of DCS (50 mg) significantly attenuated physiological
(i.e., skin conductance) responses as well as subjective urge-to-smoke
ratings in response to presentation of smoking-associated cues as
compared to placebo treated subjects (n=13). DCS treated subjects
also demonstrated reduced expired carbon monoxide levels at a
follow-up assessment one week later, although no effects on general
smoking behavior was found. These preliminary findings suggest that
DCS may be beneficial in augmenting the effects of cue exposure
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therapy during attempts at cessation of cigarette smoking. On the
contrary, however, another recent study showed that the same dose
of DCS actually produced a trend toward increases in subjective
reports of cocaine craving in 5 cocaine-dependent individuals (Price
et al., 2009). The timing of DCS administration in treatment-seeking
patients may be of relevance for these apparent discordant findings.
Along these lines, it is worthy to note that a recent animal study
showed that infusions of DCS into the basolateral amygdala actually
potentiated the reconsolidation of cocaine-associated memories in
cocaine self-administering rats (Lee et al., 2009). Clearly more studies
are needed to evaluate the possibility that DCS may actually enhance,
rather than facilitate the extinction of, the incentive salience of
cocaine-associated cues. In addition, studies need to be conducted to
determine if DCS enhances the efficacy of cue exposure therapy in
humans addicted to drugs of abuse other than cocaine or nicotine, as
are studies on the effects of DCS on non-drug addictions.

2.4. Gabapentin

2.4.1. Mechanism of action
Gabapentin is an anticonvulsant medication that has a general

inhibitory effect on neuronal transmission by inhibiting presynaptic
voltage-gated Na+ and Ca2+ channels (Dickenson and Ghandehari,
2007; Landmark, 2007; Rogawski and Loscher, 2004). As a result,
gabapentin inhibits the release of various neurotransmitters, includ-
ing glutamate, as illustrated in Fig. 1 (Coderre et al., 2007;
Cunningham et al., 2004; Dooley et al., 2000; Fink et al., 2000;
Maneuf et al., 2004; Maneuf and McKnight, 2001; Shimoyama et al.,
2000). Gabapentin also acts on calcium channels containing a2d-1
subunits to block the ability of thrombospondin released from glial
cells to promote excitatory synapse formation (Eroglu et al. 2009).

2.4.2. Clinical efficacy
Numerous studies have shown that gabapentin is efficacious in

alleviating the somatic symptoms of alcohol withdrawal (Bonnet et
al., 1999; Bozikas et al., 2002; Mariani et al., 2006; Martinez-Raga et
al., 2004; Myrick et al., 1998; Rustembegovic et al., 2004; Voris et al.,
2003), which often presents with moderate to severe CNS hyper-
excitability and convulsions. Gabapentin has also been shown to be
superior to the benzodiazepine lorazepam in reducing sleep distur-
bances associated with alcohol withdrawal (Malcolm et al., 2007). Yet
to date, clinical studies on the therapeutic efficacy of gabapentin in
reducing drug use, craving, or relapse have yielded mixed results.
Several studies have demonstrated that gabapentin (with dose ranges
of 600–1200 mg/day) does not reduce the use of cocaine in addicted
individuals (Bisaga et al., 2006; Gonzalez et al., 2007), while other
studies have shown that gabapentin indeed decreases active cocaine
use and craving (Berger et al., 2005; Myrick et al., 2001; Raby, 2000;
Raby and Coomaraswamy, 2004), perhaps by attenuating the
discriminative stimulus effects of cocaine (Haney et al., 2005). Recent
studies have shown that gabapentin (600–1500 mg/day) reduces
craving for and use of alcohol (Furieri and Nakamura-Palacios, 2007;
Mason et al., 2009; Myrick et al., 2009), and prolongs abstinence from
alcohol use in alcohol-dependent subjects (Brower et al., 2008).
However, other investigators have shown no effects of similar doses of
gabapentin on alcohol craving (Bisaga and Evans, 2006; Myrick et al.,
2007). In addition, it has been reported that gabapentin does not
reduce methamphetamine use (Heinzerling et al., 2006), has limited
effects on promoting abstinence from smoking (White et al., 2005),
and does not ameliorate subjective withdrawal symptoms in opiate-
dependent subjects (Kheirabadi et al., 2008). Taken together, these
data suggest that gabapentin is effective for the treatment of alcohol
withdrawal symptoms and may have some efficacy for reducing
craving for alcohol or cocaine (though not all studies support this
notion), but this medication is not likely to have any efficacy in
reducing addiction to cigarettes, methamphetamine, or alleviating
opiate withdrawal symptoms. To our knowledge, gabapentin has not
been tested for efficacy in the treatment of behavioral addictions.

2.5. Lamotrigine

2.5.1. Mechanism of action
Similar to gabapentin, lamotrigine is an anticonvulsant that

inhibits presynaptic voltage-gated Na+ and Ca2+ channels (Dickenson
and Ghandehari, 2007; Landmark, 2007; Rogawski and Loscher, 2004),
thereby inhibiting the release of various neurotransmitters, including
glutamate (see Fig. 1; Ahmad et al., 2004; Cunningham and Jones, 2000;
Leach et al., 1986; Lees and Leach, 1993; Lingamaneni and Hemmings,
1999; Sitges et al., 2007; Teoh et al., 1995; Waldmeier et al., 1995,
1996; Wang et al., 2001). Lamotrigine carries an uncommon but
serious risk of causing a severe skin rash, known as Stevens–Johnson
Syndrome. The risk of occurrence of this side effect can be signifi-
cantly lowered by gradual dose titration, usually starting at a dose
of 25 mg/day and tapering up weekly to doses in the range of 200–
300 mg/day.

2.5.2. Clinical efficacy
Like gabapentin, lamotrigine inhibits the somatic signs of alcohol

withdrawal (Krupitsky et al., 2007b). Recent clinical studies show that
lamotrigine also appears to exhibit efficacy in reducing craving for and
use of cocaine (Berger et al., 2005; Brown et al., 2003, 2006; Margolin
et al., 1998; Pavlovic, 2011), although it appears to leave the
subjective effects of cocaine unaltered (Winther et al., 2000). Similar
reductive effects of lamotrigine on craving for alcohol (Rubio et al.,
2006) and abused inhalants (Shen, 2006) have been reported. These
findings suggest that lamotrigine may be of clinical benefit in the
treatment of addiction to cocaine, alcohol or abused inhalants. Studies
on the potential efficacy of lamotrigine in the treatment of behavioral
addictions or addictions to opiates, nicotine, or psychostimulants such
as methamphetamine are lacking.

2.6. Memantine

2.6.1. Mechanism of action
Memantine is a noncompetitive antagonist at the NMDA receptor

(Fig. 1) and is used primarily for the treatment of cognitive decline in
Alzheimer's disease. In addition to its antagonist actions at NMDA
receptors, memantine also blocks the serotonin type 3 receptor (5-
HT3) as well as nicotinic acetylcholine receptors. Although some
abuse substances such as phencyclidine, ketamine, dextromethor-
phan or alcohol have antagonist properties at the NMDA receptor,
memantine is one of the few NMDA receptor antagonists that is
generally well-tolerated by humans and does not appear to carry an
abuse potential (Vosburg et al., 2005).

2.6.2. Clinical efficacy
In addition to being efficacious at reducing withdrawal symptoms

in detoxifying alcoholics (Krupitsky et al., 2007b) and opiate addicts
(Bisaga et al., 2001), memantine (typical doses in the 30–60 mg/day
range) has been reported to be superior to placebo in attenuating on-
going drinking and/or craving for alcohol in alcoholic subjects (Arias
et al., 2007; Bisaga and Evans, 2004; Krupitsky et al., 2007a). This
amelioration of craving for alcohol may be a result of the alcohol-like
subjective effects of memantine (Bisaga and Evans, 2004; Krupitsky et
al., 2007a). However, a larger placebo-controlled study indicated that
memantine does not reduce on-going drinking behavior in alcohol-
dependent patients (Evans et al., 2007). Memantine has been
reported to decrease the subjective effects of cigarette smoking
(Jackson et al., 2009) and intravenous heroin (Comer and Sullivan,
2007); however, particularly at higher doses, memantine can increase
the subjective and cardiovascular effects of cocaine (Collins et al.,
1998, 2007). Collectively, these data suggest that memantine may be
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of potential use in the detoxification of alcohol- or opiate-dependent
patients, and perhaps as a pharmacological adjunct for the treatment
of alcoholism. However, its potential efficacy for treating addiction to
other drugs of abuse remains unknown, and it appears that it may be
contraindicated for treating cocaine addiction. Nonetheless, a recent
open label pilot study showed that memantine decreased PG-YBOCS
scores and time spent gambling in 29 pathological gamblers (Grant et
al., 2010b), suggesting that memantine may be of potential use in the
treatment of behavioral addictions such as pathological gambling.

2.7. Modafinil

2.7.1. Mechanism of action
Modafinil is a CNS stimulant originally designed to enhance

wakefulness and vigilance in the treatment of narcolepsy and
excessive daytime sleepiness caused by sleep apnea or shiftwork.
Modafinil is sometimes prescribed as an off-label treatment for
attention-deficit/hyperactivity disorder. Although its neuropharma-
cological mechanisms of action are not yet fully understood, modafinil
does not appear to act as a monoamine releaser as is the case for
amphetamine-like stimulants. Rather, modafinil may act by stimulat-
ingα-adrenoceptors, suppressing GABA release, weakly inhibiting the
dopamine transporter, or stimulating hypothalamic orexin-containing
neurons (Ballon and Feifel, 2006; Martinez-Raga et al., 2008). Other
mechanisms of action that have been reported include reductions in
circulating free radicals and cytotoxicity induced by sleep deprivation
(Gerrard and Malcolm, 2007). While most studies suggest a dopami-
nergic basis for its stimulant effects (Andersen et al., 2010; Volkow et
al., 2009; Wisor and Eriksson, 2005), modafinil has been shown to
elevate extracellular levels of glutamate in numerous brain regions
including the dorsal striatum, hippocampus and diencephalon (see
Fig. 1) (Ferraro et al., 1997, 1998, 1999) without affecting glutamate
synthesis (Perez de la Mora et al., 1999). Modafinil is considered to
have low abuse potential (Martinez-Raga et al., 2008), although
reports of abuse potential at high doses (Andersen et al., 2010) and
non-medical use are increasing (Ballon and Feifel, 2006). As a result
modafinil is currently classified as a Schedule IV controlled substance
by the Drug Enforcement Administration. Clinically effective doses of
modafinil are typically in the range of 200–400 mg/day.

2.7.2. Clinical efficacy
Numerous clinical reports have shown that modafinil demon-

strates potential efficacy in the treatment of cocaine addiction
(Martinez-Raga et al., 2008). In a small placebo-controlled drug-
interaction study by Dackis and colleagues, it was reported that
modafinil (200 mg/day) blunted the euphorigenic effects of intrave-
nous cocaine in cocaine addicts (Dackis et al., 2003), and these
findings were later independently replicated (Malcolm et al., 2006). A
double-blind placebo-controlled study of treatment-seeking cocaine-
dependent outpatients showed that modafinil (400 mg/day) signifi-
cantly reduced daily cocaine use and prolonged abstinence (Dackis et
al., 2005). A recent multi-center clinical trial found that modafinil
decreased cocaine use and craving in cocaine-dependent subjects
without co-morbid alcohol dependence (Anderson et al., 2009).
Although these data demonstrate that modafinil might be of use in the
treatment of cocaine addiction, it is possible that some of the
beneficial effects might be due to decreases in peak plasma
concentrations of cocaine in the presence of modafinil (Donovan et
al., 2005). Modafinil has also produced nonsignificant trends toward
decreases in activemethamphetamine use among abusers of this drug
(Shearer et al., 2009), and reductions in gambling behaviors in
impulsive problematic gamblers (Zack and Poulos, 2009). Despite
these positive results indicating a potential for modafinil in treating
psychostimulant addicts and pathological gamblers, a recent study
indicated that modafinil is ineffective in reducing cigarette smoking
and actually produces more signs of withdrawal and negative affect
than in placebo treated smokers (Schnoll et al., 2008). Thus, modafinil
does not appear to be well suited for use in the treatment of smoking
cessation.

Fromaneurochemical viewpoint, it is somewhat confusingas towhy
a drug like modafinil, which increases extracellular glutamate levels,
results in reductions in cocaine intake, in light of numerous animal
studies having shownthat blockadeof glutamatergic neurotransmission
(i.e., by administration of ionotropic glutamate receptor antagonists,
postsynapticmGluR antagonists, or presynapticmGluR2/3 agonists that
suppress glutamate release) reduces cocaine reinforcement and/or
reinstatement of cocaine-seeking behavior (Gass and Olive, 2008;
Kalivas et al., 2009; Knackstedt and Kalivas, 2009; Olive, 2009;
Tzschentke and Schmidt, 2003). One possible hypothesis for the
mechanism of action of modafinil in reducing cocaine craving is by
normalizing the reductions in extracellular glutamate that are observed
in the nucleus accumbens during cocainewithdrawal, and attenuate the
ability of cocaine or cocaine-related cues to evoke craving (similar to the
hypothesizedmechanism of action for NAC— Fig. 1). Further studies are
needed to test this hypothesis.

2.8. Topiramate

2.8.1. Mechanism of action
Topiramate, like other anticonvulsants including gabapentin and

lamotrigine, has multiple mechanisms of action, including inhibition
of presynaptic voltage-gated Na+ and Ca2+ channels (thereby
inhibiting the release of neurotransmitters including glutamate) and
activation of type A GABA (GABAA) receptors (Dickenson and
Ghandehari, 2007; Landmark, 2007; Rogawski and Loscher, 2004).
In addition, it has recently been shown that topiramate is also an
antagonist at α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors containing the GluR5 subunit (Fig. 1) (Gryder
and Rogawski, 2003; Kaminski et al., 2004). These actions on AMPA
receptor function are of particular interest since this glutamate
receptor subtype has been highly indicated in the neuroadaptive
changes produced by drugs of abuse as well as mediating drug self-
administration and relapse-like behaviors (Bowers et al., 2010; Gass
and Olive, 2008; Niehaus et al., 2009; Xi and Gardner, 2008). Typical
effective doses of topiramate range from 75–350 mg/day.

2.8.2. Clinical efficacy
In addition to the attenuation of alcohol withdrawal symptoms

similar to that observed with gabapentin and lamotrigine (Krupitsky
et al., 2007b), topiramate may also aid in the amelioration of
benzodiazepine withdrawal symptoms (Michopoulos et al., 2006).
Numerous studies have been published in the last decade demon-
strating efficacy of topiramate in attenuating alcohol's subjective
effects, alcohol craving, and heavy consumption in alcoholic patients
(Anderson and Oliver, 2003; Johnson et al., 2004; Kenna et al., 2009;
Komanduri, 2003; Ma et al., 2006; Miranda et al., 2008; Rubio et al.,
2004). The ability of topiramate to reduce compulsive drinking may
be due to its ability to modulate impulsivity and improve behavioral
inhibition (Rubio et al., 2009). One study even found indications that
topiramate was superior to the “gold standard” anti-alcoholism
medication naltrexone in prolonging abstinence and reducing on-
going drinking and relapse (Baltieri et al., 2008). Thus, topiramate
appears to be a promising medication for use in the treatment of
alcoholism.

With regards to other drugs of abuse, topiramate has been shown
to reduce cocaine use and craving in cocaine-dependent individuals
(Kampman et al., 2004; Reis et al., 2008), yet the small sample sizes of
these two clinical studies are limiting (Minozzi et al., 2008). A case
report indicated that topiramate reduces the use of methylenediox-
ymethamphetamine (MDMA, “Ecstasy”) (Akhondzadeh and Hampa,
2005). In cigarette smokers, some small studies have shown beneficial
effects of topiramate in promoting abstinence from smoking or
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reducing overall smoking behavior (Arbaizar et al., 2008; Johnson et
al., 2005; Khazaal et al., 2006). The ability of topiramate to prolong
abstinence from smoking may be gender-specific, with great re-
sponses in males (Anthenelli et al., 2008). However, one study found
that, similar to lamotrigine, topiramate increased the subjective
effects of withdrawal from smoking as well as the rewarding effects of
a smoked cigarette and did not affect cue-induced craving (Reid et al.,
2007), questioning the potential use of topiramate as an aid in
smoking cessation. Similarly, topiramate has been shown to enhance
the subjective positive feelings produced by methamphetamine
(Johnson et al., 2007). Thus, topiramate may hold promise for aiding
in the treatment of addiction to alcohol and possibly cocaine and
nicotine, but more studies are needed to examine its potential as a
therapeutic for treating addiction to other drugs of abuse.

With regards to behavioral addictions, a handful of small studies
and case reports have been published in recent years indicating that
topiramate may also be of potential use in the treatment of these
disorders. Thus far, positive effects of topiramate have been observed
in reducing relapse to problematic gambling (Dannon et al., 2007) and
reducing compulsive eating and sexual behavior (Fong et al., 2005;
Khazaal and Zullino, 2006; Tata and Kockler, 2006). Clearly this
avenue for treatment of non-drug addictions needs to be explored
further.

3. Summary and conclusions

With regards to the eight medications reviewed here that possess
a glutamatergic mechanism of action (acamprosate, NAC, DCS,
gabapentin, lamotrigine, memantine, modafinil, and topiramate), we
conclude that NAC, modafinil, and topiramate have the most well-
documented and greatest potential for use in the treatment of drug
and behavioral addictions. Certainly any of the medications reviewed
here will not be a panacea for all addictions, but more likely an
effective pharmacological aid to standard individual psychotherapy or
cognitive-behavioral therapy approaches for treating addiction to
certain drugs of abuse (particularly cocaine and alcohol) as well as
non-drug addictions (particularly pathological gambling). Combined
with standard retrospective or outcome measure-based attempts at
identifying subtypes of individual addicts that may respond more
favorably to one medication or another, with the fewest adverse side
effects, the post-genomic era of today will hopefully allow researchers
and clinicians to utilize pharmacogenetic approaches to identifying
potential responders and non-responders to each of these medica-
tions prior to initiating treatment. The limited amount of data
available for some of these compounds, such as DCS and lamotrigine,
warrants larger scale multi-center studies. In addition, increased
investigation with appropriate animal models into the precise
glutamatergic mechanisms that mediate different aspects of the
addiction cycle (i.e., compulsive drug use, withdrawal, craving, drug-
seeking behavior, and relapse) will hopefully lead to more effective
pharmacological approaches that can be used to intervene at specific
stages of addiction.
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